
Appendix for “Deep Hypergraph Neural
Networks with Tight Framelets”

Ming Li, Yujie Fang, Yi Wang*, Han Feng, Yongchun Gu, Lu Bai*, Pietro Lio

AAAI 2025

A Theoretical Properties of Tight Framelets on Hyper-
graphs

As discussed in Section 3.2, our theoretical results, including Theorem 1 and its proof,
demonstrate that when ∥Px∥2 = 0, the feature vectors in a deep GCN collapse into a
one-dimensional space, represented x = γD

1/2
v 1 for some γ ∈ R. This collapse leads to

a loss of node distinguishability, which is a key factor in the oversmoothing problem. To
address this, we introduce more advanced filters that perform convolutional operations
on a channel-by-channel basis, capturing both low-pass and high-pass features. This
approach preserves a richer set of features across network layers, enhancing the model’s
ability to maintain node distinguishability and offering deeper insights into the under-
lying data structure. From an implementation perspective, our proposed FrameHGNN
model employs framelet-based hypergraph convolutions, incorporating tight framelet
transforms with both low-pass and high-pass components. In this appendix, we explore
the theoretical properties of hypergraph framelets, focusing on the performance of
framelet-based decomposition and reconstruction operators when applied to hypergraph
signals. Specifically, we investigate how the collaborative contribution of low-pass and
high-pass components facilitates effective processing of hypergraph signals, leading to
a more comprehensive understanding of signal representation and reconstruction.

Recalling the notations introduced in Section 4, consider a hypergraph G = (V, E)
with N nodes and hypergraph Laplacian L. Let U = [u1, · · · ,uN ] denote the ma-
trix of eigenvectors of L, and Λ = diag(λ1, · · · , λN ) be the diagonal matrix of the
corresponding eigenvalues. Framelets over the hypergraph are generated by a set of
scaling functions Φ = {γ; ρ(1), · · · , ρ(n)} ⊂ L1(R) associated with a filter bank
η = {a; b(1), · · · b(n)}, which satisfy the relations for any ξ ∈ R:

γ̂(2ξ) = â(ξ)γ̂(ξ) ρ̂(r)(2ξ) = b̂(r)(ξ)γ̂(ξ). (S-1)

These functions are defined as follows (for clarity, Equations (4) and (5) from Section 4
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of the main manuscript are restated here for reference):

ψj,p(µ) =

N∑
q=1

γ̂

(
λq
2j

)
uq(p)uq(µ), (S-2)

ϕrj,p(µ) =

N∑
q=1

ρ̂(r)
(
λq
2j

)
uq(p)uq(µ), r = 1, . . . , n, (S-3)

where uq(p) represent the eigenvector uq at node p.
For integers J, J1 such that J > J1, we define a tight framelet system on hyper-

graphs (denoted as TifHyper (Φ, η;G)), starting from scale J1, as a non-homogeneous,
stationary affine system:

TifHyperJJ1
(Φ, η;G) = {ψJ1,p : p ∈ V} ∪ {ϕrj,p : p ∈ V, j = J1, . . . , J}nr=1. (S-4)

In light of the theoretical background discussed above, we now present the following
formal properties of tight framelets on hypergraphs.

Theorem A1 (Properties of Tight Framelets on Hypergraphs). Let J ≥ 1 be an
integer, and consider the hypergraph framelet system TifHyperJJ1

(Φ, η;G) defined in
(S-4), with hypergraph framelets ψj,p and ϕrj,p. The following statements are equivalent:

(i) For each J1 = 1, . . . , J , the framelet system on hypergraphs, TifHyperJJ1
(ψ, η;G),

is a tight frame for l2(G). That is, ∀f ∈ l2(G),

∥f∥2 =
∑
p∈V

∣∣∣ ⟨f, ψJ1,p⟩
∣∣∣2 + J∑

j=J1

n∑
r=1

∑
p∈V

∣∣∣ 〈f, ϕrj,p〉 ∣∣∣2. (S-5)

(ii) For all f ∈ l2(G) and for j = 1, . . . , J − 1, the following identities hold:

f =
∑
p∈V

⟨f, ψJ,p⟩ψJ,p +

n∑
r=1

∑
p∈V

〈
f, ϕrJ,p

〉
ϕrJ,p, (S-6)

∑
p∈V

⟨f, ψj+1,p⟩ψj+1,p =
∑
p∈V

⟨f, ψj,p⟩ψj,p +

k∑
r=1

∑
p∈V

〈
f, ϕrj,p

〉
ϕrj,p. (S-7)

(iii) For all f ∈ l2(G) and for j = 1, . . . , J − 1, the following identities hold:

∥f∥2 =
∑
p∈V

∣∣⟨f, ψJ,p⟩
∣∣2 + n∑

r=1

∑
p∈V

∣∣〈f, ϕrJ,p〉∣∣2, (S-8)

∑
p∈V

∣∣⟨f, ψj+1,p⟩
∣∣2 =

∑
p∈V

∣∣⟨f, ψj,p⟩
∣∣2 + n∑

r=1

∑
p∈V

∣∣〈f, ϕrj,p〉∣∣2. (S-9)
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(iv) The scaling functions in Φ satisfy

1 =

∣∣∣∣γ̂ (λq2J
)∣∣∣∣2 + k∑

r=1

∣∣∣∣ρ̂(r)(λq2J
)∣∣∣∣2 ∀q = 1, . . . , N, (S-10)

∣∣∣∣γ̂ ( λq
2j+1

)∣∣∣∣2 =

∣∣∣∣γ̂ (λq2j
)∣∣∣∣2 + k∑

r=1

∣∣∣∣ρ̂(r)(λq2j
)∣∣∣∣2 ∀ q = 1, . . . , N,

j = 1, . . . , J − 1.

(S-11)

(v) The identities in (S-10) hold and the filters in the filter bank η satisfy∣∣∣∣â(λq2j
)∣∣∣∣2 + n∑

r=1

∣∣∣∣b̂(r)(λq2j
)∣∣∣∣2 = 1 ∀q ∈ σ

(j)
λ , j = 2, . . . , J, (S-12)

with

σ
(j)
λ :=

{
q ∈ {1, . . . , N} : γ̂

(
λq
2j

)
̸= 0

}
.

Proof: (i)⇐⇒(ii). Let Ψj := span{ψj,p : p ∈ V} and Φr
j := span{ϕrj,p : p ∈ V}.

Define projections PΨj
,PΦr

j
, r = 1, . . . , n by

PΨj
(f) :=

∑
p∈V

⟨f, ψj,p⟩ψj,p, PΦr
j
:=
∑
p∈V

〈
f, ϕrj,p

〉
ϕrj,p, f ∈ l2(G). (S-13)

Since TifHyperJJ1
(Ψ, η) is a tight frame on hypergraphs for l2(G) (J1 = 1, . . . , J), we

obtain by polarization identity,

f = PΨJ1
(f) +

J∑
j=J1

k∑
r=1

PΦr
j
(f) = PΨJ1+1

(f) +

J∑
j=J1+1

k∑
r=1

PΦr
j
(f) (S-14)

for all f ∈ l2(G) and for all J1 = 1, . . . , J . Thus, for J1 = 1, . . . , J − 1,

PΨJ1+1
(f) = PΨJ1

(f) +

k∑
r=1

PΦr
J1
(f), (S-15)

which is (S-7). Moreover, when J1 = J , (S-14) gives (S-6). Consequently, (i)=⇒(ii).
Conversely, recursively using (S-15) gives

PΨm+1
(f) = PΨJ1

(f) +

m∑
j=J1

k∑
r=1

PΦr
j
(f) (S-16)

for all J1 ≤ m ≤ J − 1. Taking m = J − 1 together with (S-6), we deduce (S-14),
which is equivalent to (S-5). Thus, (ii)=⇒(i).

(ii)⇐⇒(iii). The equivalence between (ii) and (iii) simply follows from the polariza-
tion identity.
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(ii)⇐⇒(iv). By the orthonormality of up,

⟨f, ψj,q⟩ =
N∑
q=1

γ̂

(
λq
2j

)
f̂ℓ uq(p),

〈
f, ϕrj,q

〉
=

N∑
q=1

ρ̂(r)
(
λq
2j

)
f̂ℓ uq(p),

where f̂q = ⟨f,uq⟩ is the Fourier coefficient of f with respect to uq . This together with
(S-13), (S-2) and (S-3) gives, for j ≥ 1 and r = 1, . . . , n, the Fourier coefficients for
the projections Pϕj(f) and Pψj(f):(
P̂Ψj (f)

)
p
=

∣∣∣∣γ̂ (λq2j
)∣∣∣∣2 f̂q, (

P̂Φr
j
(f)
)
q
=

∣∣∣∣ρ̂(r)(λp2j
)∣∣∣∣2 f̂q, ∀q = 1, . . . , N,

(S-17)
which implies that (S-6) and (S-7) are equivalent to (S-10) and (S-11) respectively. Thus,
(ii)⇐⇒(iv).

(iv)⇐⇒(v). Based on the relations (S-1) that γ̂(2ξ) = â(ξ)γ̂(ξ) and ρ̂(r)(2ξ) =

b̂(r)(ξ)γ̂(ξ) for any ξ ∈ R, it can be deduced that for q = 1, . . . , N and j ≥ 1,∣∣∣∣γ̂ (λq2j
)∣∣∣∣2 + n∑

r=1

∣∣∣∣ρ̂(r)(λq2j
)∣∣∣∣2 =

(∣∣∣∣â( λq
2j+1

)∣∣∣∣2 + n∑
r=1

∣∣∣∣b̂(r)( λq
2j+1

)∣∣∣∣2
)∣∣∣∣γ̂ ( λq

2j+1

)∣∣∣∣2 .
This shows that (S-11) is equivalent to (S-12). Therefore, (iv)⇐⇒(v).

4



B Additional Details on Experimental Studies
We provide the pseudocode for implementing FrameHGNN in the following Algorithm
1.

Algorithm 1. FrameHGNN
Input: Hypergraph G, incidence matrix H, hypergraph Laplacian L, feature matrix
X, the number of layers l
Output: X(ℓ)

1. Compute the eigenvalue and eigenvector pairs {(λq,uq)}Nj=1 for L of hypergraph
G with N nodes.
2. Define low-pass and high-pass framelets using Eq. (4) and Eq. (5).
3. Compute low-pass and high-pass coefficients V0,W r

j ∈ RN×d using Eq. (6) and
Eq. (7).
For i = 0, 1, ..., l − 1, do:
4. Decomposition: Use Wr,j as decomposition operators to represent the framelet
transform matrices for decomposition as shown in Eq. (8).
5. Reconstruction: Use W⊤

r,j for reconstruction
6. Add initial residual and identity mapping techniques using Eq. (10)

Table B-1 presents an overview of the eight datasets utilized in our experiments,
highlighting their key characteristics.

Table B-1: The statistics of datasets

Dataset Nodes Edges Classes Features

Cora 2708 1579 7 1433
Citeseer 3312 1709 6 3703
Pubmed 19717 7963 3 500
Cora-CA 2708 1072 7 1433

Senate 282 315 2 100
House 1290 340 2 100

NTU2012 2012 2012 67 100
ModelNet40 12311 12311 40 100

Table B-2 details the parameter search space explored in the node classification ex-
periments. We note that all experiments were conducted using a single NVIDIA RTX
A6000 GPU and implemented in PyTorch.
To further investigate the key characteristics of the tight framelet-based convolution,
whose theoretical properties are detailed in Appendix A, we provide an additional
analysis of the hyperparameter γ. This parameter governs the balance between the
framelet-based convolution, which incorporates both low-pass and high-pass filters, and
the standard low-pass filter FX(ℓ) (with F := D

−1/2
v HD−1

e H⊤D
−1/2
v ). Then we have

F(X(ℓ)) = γ
∑

(r,j)∈Γ W⊤
r,jdiag(θr,j)Wr,jX

(ℓ) + (1− γ)FX(ℓ) where θr,j ∈ RN are
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Table B-2: Hyperparameter searching space for node classification.

Hyperparameters Searching space

Learning rate 1e-3,2e-3,3e-3
Weight decay 1e-3,5e-3,1e-4,2e-4,5e-4,1e-5
Hidden Size 32,64,128,256,512
Dropout ratio 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Level 1,2,3
Alpha 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Gamma 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Lambda 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Seed 50,200,500,1000

learnable filter, and Γ = {(r, j) : r = 1, . . . , R, j = 0, 1, . . . , J}∪{(0, J)} is the index
set for all framelet decomposition matrices.

Moreover, the choice of the parameter β is crucial for ensuring the adaptive de-
cay of the weight matrix as we increase the number of layers. In practice, we set
βℓ = log

(
λ
ℓ + 1

)
, where λ serves as a refined parameter analogous to β. To further

understand the sensitivity of the model to these parameters, we conduct experiments
analyzing the impact of α (see Eq. (10) in Section 4), γ, and λ. Specifically, Figure B-1
presents the sensitivity analysis for the Senate and Citeseer datasets, demonstrating
results that are consistent with those shown in Figure 4 of the main manuscript. Over-
all, FrameHGNN exhibits stable performance across various configurations of these
parameters, suggesting that the model is relatively insensitive to changes in α, γ, and λ.
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Figure B-1: Parameter sensitivity analysis for FrameHGNN on the Senate (left) and
Citeseer (right) datasets.
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Table B-3 specifies the reproducible parameters corresponding to the optimal results
obtained in these experiments.

Table B-3: Hyperparameter settings for different datasets used in the experiments.

Dataset Hyperparameter Setting

Cora

Learning rate: 2e-3
Weight decay: 1e-3
Hidden Size: 512
Dropout ratio: 0.6
Level: 3

Alpha: 0.2
Gamma: 0.2
Lambda: 0.3
Seed: 50

Citeseer

Learning rate: 2e-3
Weight decay: 1e-5
Hidden Size: 512
Dropout ratio: 0.5
Level: 1

Alpha: 0.7
Gamma: 0.4
Lambda: 0.4
Seed: 500

Pubmed

Learning rate: 2e-3
Weight decay: 1e-5
Hidden Size: 512
Dropout ratio: 0.5
Level: 1

Alpha: 0.2
Gamma: 0.5
Lambda: 0.5
Seed: 1000

Cora-CA

Learning rate: 2e-3
Weight decay: 1e-3
Hidden Size: 512
Dropout ratio: 0.7
Level: 3

Alpha: 0.2
Gamma: 0.2
Lambda: 0.6
Seed: 50

Senate

Learning rate: 3e-3
Weight decay: 1e-3
Hidden Size: 256
Dropout ratio: 0.8
Level: 3

Alpha: 0.8
Gamma: 0.9
Lambda: 0.7
Seed: 200

House

Learning rate: 3e-3
Weight decay: 1e-3
Hidden Size: 512
Dropout ratio: 0.6
Level: 1

Alpha: 0.1
Gamma: 0.5
Lambda: 0.8
Seed: 500

NTU2012

Learning rate: 2e-3
Weight decay: 1e-5
Hidden Size: 512
Dropout ratio: 0.2
Level: 1

Alpha: 0.5
Gamma: 0.5
Lambda: 0.1
Seed: 50

ModelNet40

Learning rate: 2e-3
Weight decay: 1e-4
Hidden Size: 256
Dropout ratio: 0.4
Level: 1

Alpha: 0.4
Gamma: 0.4
Lambda: 0.7
Seed: 50
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C Computational Complexity Analysis
In this section, we provide an overview of the training computational complexity for
four state-of-the-art hypergraph neural networks and our proposed FrameHGNN model.
Table C-1 summarizes the estimated training complexity analysis, where the following
notations are used:

• N is the number of nodes in the given hypergraph

• M refers to the number of hyperedges in the given hypergraph

• M ′ is the number of edges in the clique expansion (when transforming the
hypergraph into a regular graph)

• ∥H∥0 represents the number of non-zero values in the incidence matrix H

• T refers to the number of training epochs

• L is the number of layers

• d is the feature dimension

• n indicates the number of high-pass filters used in FrameHGNN

• J is the scale level used in FrameHGNN

• K refers to the largest number of non-zero values in the framelet transform
matrices Wr, j (see more details in Section 4)

Importantly, n, J , K are constants independent of the given hypergraph, and both n
and J typically take small values in practical implementations. The sparsity property
of the constructed hypergraph framelets ensures that K is generally not large and may
even be smaller than or approximately equivalent to∥H∥0. As a result, FrameHGNN
offers competitive performance without imposing any additional computational burden
compared to existing methods. Specifically, the computational complexity of Frame-
HGNN is approximately on par with models like AllDeepSetss (Chien et al. 2022)and
ED-HNN (Wang et al. 2023).

Table C-1: Summary of training computational complexity for UniGCNII, Deep-HGNN,
AllDeepSets, ED-HNN, and our proposed FrameHGNN model.

Name Training Computational Complexity

UniGCNII (Huang and Yang 2021) O
(
TL(N +M + ∥H∥0)d+ TLNd2

)
Deep-HGCN (Chen et al. 2022) O

(
TLM ′d+ TLNd2

)
AllDeepSets (Chien et al. 2022) O

(
TL∥H∥0d+ TL(N +M)d2

)
ED-HNN (Wang et al. 2023) O

(
TL∥H∥0d+ TL(N +M)d2

)
FrameHGNN (Ours) O

(
TL(nJ + 1)Kd+ TL(N +M)d2

)

9



References
Chen, G.; Zhang, J.; Xiao, X.; and Li, Y. 2022. Preventing over-smoothing for hyper-
graph neural networks. arXiv preprint arXiv:2203.17159.

Chien, E.; Pan, C.; Peng, J.; and Milenkovic, O. 2022. You are AllSet: a multiset
function framework for hypergraph neural networks. In ICLR.

Huang, J.; and Yang, J. 2021. UniGNN: a unified framework for graph and hypergraph
neural networks. In IJCAI, 2563–2569.

Wang, P.; Yang, S.; Liu, Y.; Wang, Z.; and Li, P. 2023. Equivariant hypergraph diffusion
neural operators. In ICLR.


	Theoretical Properties of Tight Framelets on Hypergraphs
	Additional Details on Experimental Studies
	Computational Complexity Analysis

