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A Theoretical Properties of Tight Framelets on Hyper-
graphs

As discussed in Section 3.2, our theoretical results, including Theorem 1 and its proof,
demonstrate that when ||Pz||2 = 0, the feature vectors in a deep GCN collapse into a

one-dimensional space, represented x = fqul/ *1 for some v € R. This collapse leads to
a loss of node distinguishability, which is a key factor in the oversmoothing problem. To
address this, we introduce more advanced filters that perform convolutional operations
on a channel-by-channel basis, capturing both low-pass and high-pass features. This
approach preserves a richer set of features across network layers, enhancing the model’s
ability to maintain node distinguishability and offering deeper insights into the under-
lying data structure. From an implementation perspective, our proposed FrameHGNN
model employs framelet-based hypergraph convolutions, incorporating tight framelet
transforms with both low-pass and high-pass components. In this appendix, we explore
the theoretical properties of hypergraph framelets, focusing on the performance of
framelet-based decomposition and reconstruction operators when applied to hypergraph
signals. Specifically, we investigate how the collaborative contribution of low-pass and
high-pass components facilitates effective processing of hypergraph signals, leading to
a more comprehensive understanding of signal representation and reconstruction.

Recalling the notations introduced in Section 4, consider a hypergraph G = (V, &)
with N nodes and hypergraph Laplacian £. Let U = [uq,--- ,uy] denote the ma-
trix of eigenvectors of £, and A = diag(\1, -+, Ay) be the diagonal matrix of the
corresponding eigenvalues. Framelets over the hypergraph are generated by a set of
scaling functions ® = {y;p ... p™M} < L;(R) associated with a filter bank
n = {a;b™, ... b(™}, which satisfy the relations for any ¢ € R:

(2€) = A©FE)  p™(26) = b (E)F(E). (S-1)

These functions are defined as follows (for clarity, Equations (4) and (5) from Section 4



of the main manuscript are restated here for reference):
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where u,(p) represent the eigenvector u,, at node p.

For integers J, J; such that J > .J;, we define a tight framelet system on hyper-
graphs (denoted as TifHyper (®,n; G)), starting from scale J1, as a non-homogeneous,
stationary affine system:

TifHyper, (®,1;G) = {ts, p: pEVIU{S], i pEV,j=T1,..., T}y (S-4)

In light of the theoretical background discussed above, we now present the following
formal properties of tight framelets on hypergraphs.

Theorem A1 (Properties of Tight Framelets on Hypergraphs). Let J > 1 be an
. . . J . .
integer, gnd consider the hypergraph framelet system 7t lj.ZLIyperJ1 (®,7;G) deﬁped in
(S-4), with hypergraph framelets ¢; , and ¢7 . The following statements are equivalent:

(i) Foreach J; =1,...,J, the framelet system on hypergraphs, Tinyperj1 (Y, m;G),
is a tight frame for I3(G). That is, Vf € 12(G),
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(ii) Forall f € [3(G) and for j = 1,...,J — 1, the following identities hold:
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(iii) Forall f € I3(G) and for j = 1,...,J — 1, the following identities hold:
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(iv) The scaling functions in & satisfy
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(v) The identities in (S-10) hold and the filters in the filter bank 7 satisfy
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Proof: (i)<=>(ii). Let ¥; := span{¢; , : p € V} and ® := span{¢} , : p € V}.
Define projections Py, P¢>Jr_, r=1,...,nby

=1 vgeol, j=2...,J (512

with

Py, (f) =Y (fip)Vip Pari=> (f,65,67, [E€h(@). (S13)

peEV pEV

Since Tinyper:;1 (U, n) is a tight frame on hypergraphs for l2(G) (J; = 1,...,J), we
obtain by polarization identity,
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forall f € 13(G) and forall J; = 1,...,J. Thus, for J; = 1,...,J — 1,

k
Py, i (f) =Pu,, (f) + Y Pay (), (8-15)

which is (S-7). Moreover, when J; = J, (S-14) gives (S-6). Consequently, (i)=>(ii).
Conversely, recursively using (S-13)) gives

m k
Py, (f)=Pu, (/)+ D> Par(f) (S-16)

j=J1 r=1

forall J; < m < J — 1. Taking m = J — 1 together with (S-6), we deduce (S-14),
which is equivalent to (S=3)). Thus, (ii))=(i).

(ii)<=>(iii). The equivalence between (ii) and (iii) simply follows from the polariza-
tion identity.



(ii)<=(iv). By the orthonormality of w,,,
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where fq = (f, ug) is the Fourier coefficient of f with respect to u,. This together with
(S-13), (S-2) and (S-3) gives, for j > 1 and r = 1,...,n, the Fourier coefficients for
the projections P¢;(f) and Pv;(f):
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which implies that (S-6) and (S-7) are equivalent to (S-10) and (S-TTJ) respectively. Thus,
(i) = (iv). _

(iv)<=>(v). Based on the relations (S-T) that 7(2£) = a(&)7(€) and p(")(2€) =
b(r) (£)7(€) for any £ € R, it can be deduced that for¢g =1,..., N and j > 1,

£ - (1 EP Rk

This shows that (S-TT)) is equivalent to (S-12)). Therefore, (iv)<=-(v).
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B Additional Details on Experimental Studies

We provide the pseudocode for implementing FrameHGNN in the following Algorithm
1.

Algorithm 1. FrameHGNN

Input: Hypergraph G, incidence matrix H, hypergraph Laplacian £, feature matrix
X, the number of layers [

Output: X©

1. Compute the eigenvalue and eigenvector pairs {(Ag, ©,)} jN=1 for £ of hypergraph
G with N nodes.

2. Define low-pass and high-pass framelets using Eq. (4) and Eq. (5).

3. Compute low-pass and high-pass coefficients Vo, W) € RN >4 ysing Eq. (6) and
Eq. (7).

Fori=0,1,...,1 — 1, do:

4. Decomposition: Use WV, ; as decomposition operators to represent the framelet
transform matrices for decomposition as shown in Eq. (8).

5. Reconstruction: Use WTT ; for reconstruction

6. Add initial residual and identity mapping techniques using Eq. (10)

Table presents an overview of the eight datasets utilized in our experiments,
highlighting their key characteristics.

Table B-1: The statistics of datasets

Dataset Nodes Edges Classes Features
Cora 2708 1579 7 1433
Citeseer 3312 1709 6 3703
Pubmed 19717 7963 3 500
Cora-CA 2708 1072 7 1433
Senate 282 315 2 100
House 1290 340 2 100
NTU2012 2012 2012 67 100
ModelNet40 12311 12311 40 100

Table details the parameter search space explored in the node classification ex-
periments. We note that all experiments were conducted using a single NVIDIA RTX
A6000 GPU and implemented in PyTorch.

To further investigate the key characteristics of the tight framelet-based convolution,
whose theoretical properties are detailed in Appendix A, we provide an additional
analysis of the hyperparameter ~. This parameter governs the balance between the
framelet-based convolution, which incorporates both low-pass and high-pass filters, and
the standard low-pass filler FX (9 (with F := D, /*HD;H" D, '/?). Then we have
F(XO) =53, 5y er Wi diag(0, )W, ;X 4 (1 = 7)FX® where 6, ; € RY are



Table B-2: Hyperparameter searching space for node classification.

Hyperparameters Searching space
Learning rate le-3,2e-3,3e-3

Weight decay le-3,5e-3,1e-4,2e-4,5¢e-4,1e-5
Hidden Size 32,64,128,256,512
Dropout ratio 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Level 1,2,3

Alpha 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Gamma 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Lambda 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Seed 50,200,500,1000

learnable filter, and ' = {(r,j) : r=1,...,R,5 =0,1,...,J}U{(0,J)} is the index
set for all framelet decomposition matrices.

Moreover, the choice of the parameter 3 is crucial for ensuring the adaptive de-
cay of the weight matrix as we increase the number of layers. In practice, we set
Be = log (% + 1), where \ serves as a refined parameter analogous to (. To further
understand the sensitivity of the model to these parameters, we conduct experiments
analyzing the impact of « (see Eq. (10) in Section 4), -, and \. Specifically, Figure
presents the sensitivity analysis for the Senate and Citeseer datasets, demonstrating
results that are consistent with those shown in Figure 4 of the main manuscript. Over-
all, FrameHGNN exhibits stable performance across various configurations of these
parameters, suggesting that the model is relatively insensitive to changes in «, 7y, and A.
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Figure B-1: Parameter sensitivity analysis for FrameHGNN on the Senate (left) and
Citeseer (right) datasets.



Table [B-3| specifies the reproducible parameters corresponding to the optimal results
obtained in these experiments.

Table B-3: Hyperparameter settings for different datasets used in the experiments.

Dataset \ Hyperparameter Setting
Lea.rmng rate: 2e-3 Alpha: 0.2
Weight decay: le-3
. . Gamma: 0.2
Cora Hidden Size: 512
. Lambda: 0.3
Dropout ratio: 0.6 Seed: 50
Level: 3 '
Learning rate: 2e-3 .
Weight decay: le-5 Alpha: 0.7
. . . Gamma: 0.4
Citeseer Hidden Size: 512
;i Lambda: 0.4
Dropout ratio: 0.5
Seed: 500
Level: 1
Learning rate: 2e-3 .
Weight decay: le-5 éi}iﬂ;ao(z) 5
Pubmed Hidden Size: 512 s
Dr t ratio: 0.5 Lambda: 0.5
opout ratio: L. Seed: 1000
Level: 1
Lea.rmng rate: 2e-3 Alpha: 0.2
Weight decay: 1le-3 Gamma: 0.2
Cora-CA Hidden Size: 512 s
. Lambda: 0.6
Dropout ratio: 0.7 Seed: 50
Level: 3 ’
Leqrmng rate: 3e-3 Alpha: 0.8
Weight decay: le-3
. . Gamma: 0.9
Senate Hidden Size: 256
. Lambda: 0.7
Dropout ratio: 0.8
Seed: 200
Level: 3
Learning rate: 3e-3 .
Weight decay: le-3 Alpha: 0.1
. . Gamma: 0.5
House Hidden Size: 512
D  ratio: 0.6 Lambda: 0.8
ropout ratio: 0. Seed: 500
Level: 1
Learning rate: 2e-3 .
Weight decay: le-5 égﬁ;;aqg 5
NTU2012 Hidden Size: 512 s
;i Lambda: 0.1
Dropout ratio: 0.2
Seed: 50
Level: 1
Learning rate: 2e-3 .
Weight decay: le-4 éﬂ:;aqg 4
ModelNet40 | Hidden Size: 256 s
. Lambda: 0.7
Dropout ratio: 0.4
Seed: 50
Level: 1




C Computational Complexity Analysis

In this section, we provide an overview of the training computational complexity for
four state-of-the-art hypergraph neural networks and our proposed FrameHGNN model.
Table [C-T] summarizes the estimated training complexity analysis, where the following
notations are used:

¢ N is the number of nodes in the given hypergraph
* M refers to the number of hyperedges in the given hypergraph

* M’ is the number of edges in the clique expansion (when transforming the
hypergraph into a regular graph)

|H]||o represents the number of non-zero values in the incidence matrix H
o T refers to the number of training epochs

* L is the number of layers

* d is the feature dimension

* n indicates the number of high-pass filters used in FrameHGNN

 J is the scale level used in FrameHGNN

* K refers to the largest number of non-zero values in the framelet transform
matrices Wr, j (see more details in Section 4)

Importantly, n, J, K are constants independent of the given hypergraph, and both n
and J typically take small values in practical implementations. The sparsity property
of the constructed hypergraph framelets ensures that K is generally not large and may
even be smaller than or approximately equivalent to||H||o. As a result, FrameHGNN
offers competitive performance without imposing any additional computational burden
compared to existing methods. Specifically, the computational complexity of Frame-
HGNN is approximately on par with models like AllDeepSetss (Chien et al.[2022)and
ED-HNN (Wang et al.|2023).

Table C-1: Summary of training computational complexity for UniGCNII, Deep-HGNN,
AllDeepSets, ED-HNN, and our proposed FrameHGNN model.

Name Training Computational Complexity

UniGCNII (Huang and Yang[2021) O(TL(N + M + |H|o)d + TLNd2)

Deep-HGCN (Chen et al.|[2022) O(TLM'd+TLN d2)

AllDeepSets (Chien et al.[2022) (TLHHHod Y TL(N + M)d2>

ED-HNN (Wang et al. 2023) (TLHHHOd +TL(N + M)d2>
o

FrameHGNN (Ours) TL(nJ +1)Kd + TL(N + M)d2>
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