
Appendix for “ When Hypergraph Meets Heterophily:
New Benchmark Datasets and Baseline”

Authors: M. Li, Y. Gu, Y. Wang*, Y. Fang, L. Bai*, X. Zhuang, P. Lio

HHL: Heterophilic Hypergraph Learning

(Repository: https://kellysylvia77.github.io/HHL)
AAAI 2025

Appendix A: Additional Details for Experimental Implementation
Code and Dataset Availability
The newly developed heterophilic hypergraph benchmark datasets, along with the full experimental implementation code for
HyperUFG, are available at https://kellysylvia77.github.io/HHL. These resources are provided to support reproducibility and
further exploration of the results presented in this paper.

Existing Hypergraph Datasets
In addition to the introduction of four new benchmark hypergraphs, we utilize seven established hypergraph datasets to com-
prehensively assess the performance of HyperUFG. The details of these datasets are summarized in Table S-1. Our dataset
selection includes widely-used co-citation networks (Cora, Citeseer, Pubmed) (Yadati et al. 2019), co-authorship networks
(Cora-CA, DBLP-CA) (Yadati et al. 2019), as well as the U.S. Senate and House voting records (Fowler 2006). These datasets
exhibit diverse scales and structures, although they predominantly exhibit homophilic relationships, making them well-suited
for evaluating baseline performance in homophilic settings.

Table S-1: Overview of key statistics for several benchmark hypergraph datasets.

Datasets Cora Citeseer Pubmed Cora-CA DBLP-CA Senate House
Hypernodes, |V| 2, 708 3, 312 19, 717 2, 708 43, 413 282 1, 290
Hyperedges, |E| 1, 579 1, 079 7, 963 1, 072 22, 535 315 340

Avg. hyperedge size 3.0 ± 1.1 3.2 ± 2.0 4.3 ± 5.7 4.2 ± 4.1 4.7 ± 6.1 17.2 ± 6.7 34.9 ± 21.4
Features, d 1, 433 3, 703 500 1, 433 1, 425 100 100
Classes, c 7 6 3 7 6 2 2

Node hom. ratio, Hnode 0.6399 0.5771 0.5499 0.7279 0.8557 0.4793 0.5049
Edge hom. ratio, Hedge 0.7462 0.6814 0.7765 0.7797 0.8656 0.4642 0.4851

Baseline Models
We benchmark HyperUFG against the graph-agnostic method MLP and several existing hypergraph neural networks (HNNs).

• MLP: As a graph-agnostic model, MLP serves as a baseline for assessing the impact of incorporating relational learning in
HNNs. Its performance provides a reference point for evaluating the advantages of HNNs.

• While models such as HNN (Feng et al. 2019), HyperGCN (Yadati et al. 2019), HyperND (Prokopchik, Benson, and Tudisco
2022), AllDeepSets, AllSetTransformer (Chien et al. 2022), and the UniGNN family (Huang and Yang 2021) (including
UniGCN, UniSAGE, UniGAT, and UniGCNII) are widely recognized in the HNN domain, they primarily focus on datasets
with homophilic relationships and pay little attention to heterophilic hypergraph datasets. As a result, their performance
evaluations are often limited to homophilic scenarios.

• ED-HNN (Wang et al. 2023) and SheafHyperGNN (Duta et al. 2023) are recent models that have started to address the issue
of heterophilic hypergraph learning. While they begin to touch on this challenge, their exploration remains limited, as the
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Table S-2: Performance comparison between UniGNN models and HyperUFG on heterophilic hypergraphs. The best-performing
model is highlighted inh lilac, the second-best in blue, and the third-best in grey.

Datasets Actor Amazon-ratings Twitch-gamers Pokec Senate House
Edge hom. ratio, Hedge 0.4675 0.3677 0.4857 0.4529 0.4642 0.4851

MLP 85.45 ± 1.21 26.70 ± 2.82 52.77 ± 1.81 56.92 ± 2.46 52.25 ± 5.17 51.86 ± 2.34

UniGCN 70.55 ± 3.90 24.65 ± 1.88 51.87 ± 0.75 51.64 ± 0.87 50.56 ± 5.99 54.52 ± 2.91
UniSAGE 67.76 ± 3.59 26.38 ± 3.01 51.94 ± 0.61 54.19 ± 2.53 49.44 ± 5.43 53.53 ± 3.53
UniGAT 71.57 ± 2.14 26.39 ± 1.61 52.06 ± 0.35 51.32 ± 0.45 49.30 ± 5.00 56.04 ± 2.03

UniGCNII 80.48 ± 1.13 26.63 ± 1.32 50.84 ± 0.76 54.25 ± 2.70 49.30 ± 4.25 67.25 ± 2.57

HyperUFG 89.32 ± 0.75 40.53 ± 2.25 52.35 ± 0.04 62.30 ± 0.12 67.61 ± 7.00 72.82 ± 2.22

datasets used for evaluation are either small in scale or not fully representative of true heterophily, as discussed in the main
manuscript.

Hyperparameters Selection
All baseline models are implemented using the PyTorch framework (Paszke et al. 2017), alongside the Torch-Geometric library
for geometric deep learning (Fey and Lenssen 2019). Detailed experimental configurations and hyperparameter settings for
each baseline model are provided to ensure the integrity and reproducibility of our results.

• MLP: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, hidden dimensions
in {32, 64, 128, 256, 512}, layers number in {1, 2, 8, 16, 32, 64}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• HGNN: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, hidden dimen-
sions in {32, 64, 128, 256, 512}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• HyperGCN: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, hidden
dimensions in {32, 64, 128, 256, 512}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• HyperND: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, hidden
dimensions of MLP in {32, 64, 128, 256, 512}, hidden dimensions of Classifier in {32, 64, 128, 256, 512}, layers number
in {1, 2, 8, 16, 32, 64}, restart alpha in {0.0, 0.5}, input dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, dropout in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• AllDeepSets: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, hidden
dimensions of MLP in {32, 64, 128, 256, 512}, hidden dimensions of Classifier in {32, 64, 128, 256, 512}, All layers
number in {1, 2, 8, 16, 32, 64}, layers number of MLP in {1, 2, 8, 16, 32, 64}, layers number of MLP2 in {1, 2, 8, 16, 32,
64}, layers number of MLP3 in {1, 2, 8, 16, 32, 64}, layers number of Classifier in {1, 2, 8, 16, 32, 64}, restart alpha in
{0.0, 0.5}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• AllSetTransformer: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4},
hidden dimensions of MLP in {32, 64, 128, 256, 512}, hidden dimensions of Classifier in {32, 64, 128, 256, 512}, All layers
number in {1, 2, 8, 16, 32, 64}, layers number of MLP in {1, 2, 8, 16, 32, 64}, layers number of MLP2 in {1, 2, 8, 16, 32,
64}, layers number of MLP3 in {1, 2, 8, 16, 32, 64}, layers number of Classifier in {1, 2, 8, 16, 32, 64}, restart alpha in
{0.0, 0.5}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• UniGNNs (including UniGCN, UniSAGE, UniGAT and UniGCNII): learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight
decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, lambda in {0.0, 0.5}, hidden dimensions in {32, 64, 128, 256, 512},
layers number in {1, 2, 8, 16, 32, 64}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• ED-HNN: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, hidden
dimensions of MLP in {32, 64, 128, 256, 512}, hidden dimensions of Classifier in {32, 64, 128, 256, 512}, All layers
number in {1, 2, 8, 16, 32, 64}, layers number of MLP in {1, 2, 8, 16, 32, 64}, layers number of MLP2 in {1, 2, 8, 16, 32,
64}, layers number of MLP3 in {1, 2, 8, 16, 32, 64}, layers number of Classifier in {1, 2, 8, 16, 32, 64}, restart alpha in
{0.0, 0.5}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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Fig. S-1: An intuitive illustration of toy hypergraphs with varying homophily/heterophily ratios.

Table S-3: Detailed statistics of the newly-developed heterophilic hypergraphs.

Datasets Actor Amazon-ratings Twitch-gamers Pokec
Hypernodes, |V| 16, 255 22, 299 16, 812 14, 998
Hyperedges, |E| 10, 164 2, 090 2, 627 2, 406

Avg. hyperedge size 5.43 ± 2.65 3.10 ± 0.62 6.23 ± 3.37 2.29 ± 0.65
Features, d 50 111 7 65
Classes, c 3 5 2 2

Proportions of each category 62:15:23 19:10:20:26:25 50:50 49:51
Node hom. ratio, Hnode 0.4815 0.4805 0.4893 0.4952
Edge hom. ratio, Hedge 0.4675 0.3677 0.4857 0.4529

• SheafHyperGNN: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4},
hidden dimensions of MLP in {32, 64, 128, 256, 512}, hidden dimensions of Classifier in {32, 64, 128, 256, 512}, All
layers number in {1, 2, 8, 16, 32, 64}, layers number of MLP in {1, 2, 8, 16, 32, 64}, layers number of MLP2 in {1, 2, 8,
16, 32, 64}, layers number of MLP3 in {1, 2, 8, 16, 32, 64}, layers number of Classifier in {1, 2, 8, 16, 32, 64}, dropout in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• HyperUFG: learning rate in {1e-2, 1e-3, 2e-3, 3e-3}, weight decay in {1e-2, 1e-3, 1e-4, 2e-3, 2e-4, 5e-3, 5e-4}, alpha in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, gamma in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, lambda in {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9}, Lev in {1, 2, 3, 4, 5}, hidden dimensions in {32, 64, 128, 256, 512}, layers number in {1, 2, 8, 16,
32, 64}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Appendix B: Additional Experimental Results

The comparative performance of HyperUFG against the UniGNN family is presented in Table S-2. The results clearly demon-
strate that HyperUFG consistently outperforms all UniGNN variants. Additionally, we observe that MLP achieves superior
performance compared to the UniGNN models. This finding aligns with the observations in the main manuscript, where we
discuss the limitations of UniGNNs in handling heterophilic data. Specifically, UniGNNs struggle with heterophily, which
results in their performance being surpassed by MLP in such scenarios.

Appendix C: Further Clarification on Homophily Measures

To provide a clearer understanding of homophily in hypergraphs, we present several toy schematic diagrams that illustrate
how hyperedges and nodes change characteristics under varying homophily ratios (see Fig. S-1). In particular, Fig. S-1 (a) and
Fig. S-1 (c) demonstrate that the homophily measures from both perspectives can accurately capture the extremes of complete
homophily and complete heterophily, as we intuitively expect in hypergraphs. In more intermediate cases, slight differences
between the two homophily measures can emerge, as illustrated in Fig. S-1 (b).



0.0~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0
Homophily Rate Interval

0

20

40

60

80

100
Pr

op
or

tio
n 

of
 N

od
es

 (%
)

(a) Actor

0.0~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0
Homophily Rate Interval

0

20

40

60

80

100

Pr
op

or
tio

n 
of

 N
od

es
 (%

)

(b) Amazon-ratings

0.0~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0
Homophily Rate Interval

0

20

40

60

80

100

Pr
op

or
tio

n 
of

 N
od

es
 (%

)

(c) Twitch-gamers

0.0~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0
Homophily Rate Interval

0

20

40

60

80

100

Pr
op

or
tio

n 
of

 N
od

es
 (%

)

(d) Pokec

Fig. S-2: Distribution of node homophily ratios across four newly-developed heterophilic hypergraphs. The horizontal axis
represents intervals of homophily ratios, while the vertical axis indicates the frequency of nodes in each interval.
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Fig. S-3: Distribution of hyperedge homophily ratios across four newly-developed heterophilic hypergraphs. The horizontal axis
represents intervals of homophily ratios, while the vertical axis indicates the frequency of hyperedges in each interval.

Appendix D: Additional Datasets Statistics
Table S-3 provides additional statistical information on the proposed datasets, including the distribution of nodes across different
classes. These statistics indicate that the datasets are not only relatively larger in scale compared to the Senate and House
datasets presented in Table S-1, but also mostly class-balanced, offering favorable support for validating research on heterophilic
hypergraph learning.

To further explore the relationship between homophily and heterophily in hypergraph datasets, we visualize the distribution of
node and hyperedge homophily using the two proposed homophily quantification methods. These visualizations are presented
in Figs. S-2 and S-3. From the results, it is evident that the majority of nodes and hyperedges in the four benchmark datasets
have a homophily rate of less than 0.5, indicating that these hypergraphs are predominantly heterophilic. This poses a significant
challenge for the design of effective hypergraph filtering methods.

Appendix E: Theoretical Properties of Hypergraph Framelet System
As highlighted in Section 4 (in the main manuscript), HyperUFG integrates both low-pass and high-pass filters within its hy-
pergraph convolution layer, effectively addressing the limitations of spatial-based message passing that may impede effective
neighbor aggregation in heterophilic hypergraph learning scenarios. Consistent with the principles that guide the development
of GNNs for heterophilic graphs (Bo et al. 2021; Li, Pan, and Kang 2024; Huang et al. 2024), we believe that low-pass filters
primarily capture similarities among homophilic neighbors, whereas high-pass filters emphasize extracting differentiating in-
formation among heterophilic neighbors. In this section, we further explore the theoretical properties of hypergraph framelets
to enhance understanding of how framelet-based decomposition and reconstruction operators function when applied to hyper-
graph signals. Specifically, we investigate how the collaborative contribution of low-pass and high-pass components aids in the
effective processing of hypergraph signals, providing deeper insights into their roles in signal representation and reconstruction.

Recalling the notations introduced in Section 4, consider a hypergraph G = (V, E) with a vertex set V containing
N = |V| vertices. Let U = [u1, · · · ,uN ] represent the matrix of eigenvectors of the hypergraph Laplacian Lh, and let
Λ = diag(λ1, · · · , λN ) be the diagonal matrix of the eigenvalues. We define a set of scaling functions ξ = {δ; η(1), · · · , η(k)}
associated with a filter bank ρ = {a; b(1), · · · b(k)}. These functions satisfy δ̂(2ϑ) = â(ϑ)δ̂(ϑ) and η̂(r)(2ϑ) = b̂(r)(ϑ)δ̂(ϑ)

for any ϑ ∈ R, where f̂(ϑ) denotes the Fourier transform of f . Additionally, the functions Φj,p(ν) and Ψr
j,p(ν) represent the

low-pass and high-pass framelets, respectively, at node ν and are associated with node t at scale level j ∈ {1, · · · , J}. These
functions are defined as follows (for clarity, we copy and paste the Equations (3) and (4) from Section 4 of the main manuscript



here for reference):

Low-pass: Φj,t(ν) =

N∑
p=1

δ̂

(
λp
2j

)
up(t)up(ν), (A-1)

High-pass: Ψr
j,t(ν) =

N∑
p=1

η̂(r)
(
λp
2j

)
up(t)up(ν), r = 1, . . . , k, (A-2)

where up(t) represents the t-th component of the eigenvector up.

For two integers J, J1 such that J > J1, we define a hypergraph framelet system (denoted as HFS (ξ, ρ;G)), starting from
a scale J1, as a non-homogeneous, stationary affine system:

HFSJ
J1
(ξ, ρ;G) = {ΦJ1,t : t ∈ V} ∪ {Ψr

j,t : t ∈ V, j = J1, . . . , J}kr=1. (A-3)

The system HFSJ
J1
(ξ, ρ;G) is referred to as a hypergraph tight frame for l2(G), and its elements are called hypergraph framelets

on are called hypergraph framelets on G.

Theorem S1 (Equivalence of Hypergraph Framelet Tightness). Let J ≥ 1 be an integer, and consider the hypergraph
framelet system HFSJ

J1
(ξ, ρ;G), where J1 = 1, . . . , J , as defined in(A-3), with hypergraph framelets Φj,t and Ψr

j,t. Then, the
following statements are equivalent:

(i) For each J1 = 1, . . . , J , the hypergraph framelet system HFSJ
J1
(ξ, ρ;G) is a tight frame for l2(G), that is, ∀f ∈ l2(G),

∥f∥2 =
∑
t∈V

∣∣∣ ⟨f,ΦJ1,t⟩
∣∣∣2 + J∑

j=J1

k∑
r=1

∑
t∈V

∣∣∣ 〈f,Ψr
j,t

〉 ∣∣∣2. (A-4)

(ii) For all f ∈ l2(G) and for j = 1, . . . , J − 1, the following identities hold:

f =
∑
t∈V

⟨f,ΦJ,t⟩ΦJ,t +

k∑
r=1

∑
t∈V

〈
f,Ψr

J,t

〉
Ψr

J,t, (A-5)

∑
t∈V

⟨f,Φj+1,t⟩Φj+1,t =
∑
t∈V

⟨f,Φj,t⟩Φj,t +

k∑
r=1

∑
t∈V

〈
f,Ψr

j,t

〉
Ψr

j,t. (A-6)

(iii) For all f ∈ l2(G) and for j = 1, . . . , J − 1, the following identities hold:

∥f∥2 =
∑
t∈V

∣∣⟨f,ΦJ,t⟩
∣∣2 + k∑

r=1

∑
t∈V

∣∣〈f,Ψr
J,t

〉∣∣2, (A-7)

∑
t∈V

∣∣⟨f,Φj+1,t⟩
∣∣2 =

∑
t∈V

∣∣⟨f,Φj,t⟩
∣∣2 + k∑

r=1

∑
t∈V

∣∣〈f,Ψr
j,t

〉∣∣2. (A-8)

(iv) The functions in ξ satisfy

1 =

∣∣∣∣δ̂(λp2J
)∣∣∣∣2 + k∑

r=1

∣∣∣∣η̂(r)(λp2J
)∣∣∣∣2 ∀p = 1, . . . , N, (A-9)

∣∣∣∣δ̂( λp
2j+1

)∣∣∣∣2 =

∣∣∣∣δ̂(λp2j
)∣∣∣∣2 + k∑

r=1

∣∣∣∣η̂(r)(λp2j
)∣∣∣∣2 ∀ p = 1, . . . , N,

j = 1, . . . , J − 1.
(A-10)



(v) The identities in (A-9) hold and the filters in the filter bank ρ satisfy∣∣∣∣â(λp2j
)∣∣∣∣2 + k∑

r=1

∣∣∣∣b̂(r)(λp2j
)∣∣∣∣2 = 1 ∀p ∈ σ

(j)
δ , j = 2, . . . , J, (A-11)

with

σ
(j)
δ :=

{
p ∈ {1, . . . , N} : δ̂

(
λp
2j

)
̸= 0

}
.

Proof: (i)⇐⇒(ii). Let ϕj := span{Φj,t : t ∈ V} and ψr
j := span{Ψr

j,t : t ∈ V}. Define projections Pϕj ,Pψr
j , r = 1, . . . , k

by
Pϕj(f) :=

∑
t∈V

⟨f,Φj,t⟩Φj,t, Pψr
j (f) :=

∑
t∈V

〈
f,Ψr

j,t

〉
Ψr

j,t, f ∈ l2(G). (A-12)

Since HFSJ
J1
(ξ, ρ) is a hypergraph tight frame for l2(G) for J1 = 1, . . . , J , we obtain by polarization identity,

f = PϕJ1
(f) +

J∑
j=J1

k∑
r=1

Pψr
j (f) = PϕJ1+1(f) +

J∑
j=J1+1

k∑
r=1

Pψr
j (f) (A-13)

for all f ∈ l2(G) and for all J1 = 1, . . . , J . Thus, for J1 = 1, . . . , J − 1,

PϕJ1+1(f) = PϕJ1
(f) +

k∑
r=1

ψr
j (f), (A-14)

which is (A-6). Moreover, when J1 = J , (A-13) gives (A-5). Consequently, (i)=⇒(ii). Conversely, recursively using (A-14)
gives

Pϕm+1(f) = PϕJ1
(f) +

m∑
j=J1

k∑
r=1

Pψr
j (f) (A-15)

for all J1 ≤ m ≤ J − 1. Taking m = J − 1 together with (A-5), we deduce (A-13), which is equivalent to (A-4). Thus,
(ii)=⇒(i).

(ii)⇐⇒(iii). The equivalence between (ii) and (iii) simply follows from the polarization identity.
(ii)⇐⇒(iv). By the orthonormality of up,

⟨f,Φj,t⟩ =
N∑

p=1

δ̂

(
λp
2j

)
f̂p up(t),

〈
f,Ψr

j,t

〉
=

N∑
p=1

η̂(r)
(
λp
2j

)
f̂p up(t),

where f̂p = ⟨f,up⟩ is the Fourier coefficient of f with respect to up. This together with (A-12), (A-1) and (A-2) gives, for
j ≥ 1 and r = 1, . . . , k, the Fourier coefficients for the projections Pϕj(f) and Pψr

j (f):(
P̂ϕj(f)

)
p
=

∣∣∣∣δ̂(λp2j
)∣∣∣∣2 f̂p, (

P̂ψr
j (f)

)
p
=

∣∣∣∣η̂(r)(λp2j
)∣∣∣∣2 f̂p, ∀p = 1, . . . , N, (A-16)

which implies that (A-5) and (A-6) are equivalent to (A-9) and (A-10) respectively. Thus, (ii)⇐⇒(iv).
(iv)⇐⇒(v). Based on the relations that δ̂(2ϑ) = â(ϑ)δ̂(ϑ) and η̂(r)(2ϑ) = b̂(r)(ϑ)δ̂(ϑ) for any ϑ ∈ R, it can be deduced that

for p = 1, . . . , N and j ≥ 1,∣∣∣∣δ̂(λp2j
)∣∣∣∣2 + k∑

r=1

∣∣∣∣η̂(r)(λp2j
)∣∣∣∣2 =

(∣∣∣∣â( λp
2j+1

)∣∣∣∣2 + k∑
r=1

∣∣∣∣b̂(r)( λp
2j+1

)∣∣∣∣2
)∣∣∣∣δ̂( λp

2j+1

)∣∣∣∣2 .
This shows that (A-10) is equivalent to (A-11). Therefore, (iv)⇐⇒(v).



Table S-4: Summary of training computational complexity for UniGCNII, Deep-HGNN, AllDeepSets, ED-HNN, and our pro-
posed HyperUFG model. N denotes the number of nodes in the given hypergraph, M represents the number of hyperedges,
M ′ is the number of edges in the clique expansion (when transforming the hypergraph into a regular graph), ∥H∥0 refers to the
number of non-zero values in the incidence matrix H, T is the number of training epochs, L is the number of layers, d refers
to the feature dimension, k represents the number of high-pass filters in HyperUFG, J is the scale level in HyperUFG, and K
denotes the largest number of non-zero values in the framelet transform matrices Wr, j.

Name Training Computational Complexity

UniGCNII (Huang and Yang 2021) O(TL(N +M + ∥H∥0)d+ TLNd2)
Deep-HGCN (Chen et al. 2022) O(TLM ′d+ TLNd2)
AllDeepSets (Chien et al. 2022) O(TL∥H∥0d+ TL(N +M)d2)
ED-HNN (Wang et al. 2023) O(TL∥H∥0d+ TL(N +M)d2)
HyperUFG (Ours) O(TL(kJ + 1)Kd+ TL(N +M)d2)

Appendix F: Computational Complexity Analysis
This appendix provides an analysis of the computational complexity associated with training four state-of-the-art hypergraph
neural networks and our proposed HyperUFG model. A summary of the estimated training complexities is presented in Table
S-4.

As shown in Table S-4, n, J , K are constants that are independent of the specific hypergraph. In practical scenarios, n and
J usually take on relatively small values. On the other hand,thanks to the sparsity of the constructed hypergraph framelets, K
tends to be small and may even be less than or approximately equal to ∥H∥0. Consequently, HyperUFG maintains competitive
performance without incurring significant additional computational overhead compared to existing models. Specifically, the
computational complexity of HyperUFG is comparable to that of models such as AllDeepSets (Chien et al. 2022) and ED-HNN
(Wang et al. 2023).

Appendix G: Exploratory Thoughts on Open Problems in HHL
As discussed in Section 2.1 (in the main manuscript), to the best of our knowledge, only ED-HNN (Wang et al. 2023) and
SheafHyperGNN (Duta et al. 2023) briefly mention the issue of heterophilic hypergraph learning (that is why a related work
section is absent from the main manuscript), albeit without a focused examination of the most direct challenges such as evalu-
ation metrics and data sources. This gap underscores the importance of our work. Our study represents an initial effort in the
promising field of heterophilic hypergraph learning. To inspire further research in this emerging area, we propose several open
problems, some of which are currently under exploration within our research group:

• Developing new metrics and conducting an in-depth investigation of the various characteristics of these metrics, particularly
their effectiveness and/or distinctiveness in accurately evaluating the homophily/heterophily of a given hypergraph. Key
questions include: “What is missing in our current understanding of homophily metrics for hypergraph?”, “Can an effective
bridge be established between metrics for graphs and those for hypergraphs?” Lessons might possibly be drawn from recent
advances in (Telyatnikov et al. 2023; Zheng, Luan, and Chen 2024; Luan et al. 2024);

• Conducting a thorough theoretical analysis of the key factors influencing the performance of heterophilic HNNs, including
investigating the expressive power/universal approximation ability/generalization capability of specifically designed HNNs.

• Formulating formally and developing methods for modeling dynamic hypergraphs that exhibit heterophily, or more broadly,
enabling continue/lifelong/incremental learning on heterophilic hypergraphs;

• Extending heterophilic graph and hypergraph learning to more general topological domains (Hajij et al. 2022), such as sim-
plicial/cell/combinatorial complexes; Developing precise definitions for higher-order homophily metrics (Sarker, Northrup,
and Jadbabaie 2024) and establishing problem formulations for heterophilic topological domains and their associated learn-
ing tasks represent a promising avenue for research;

In addition to these challenges, we call for further research on creating more complex and diverse datasets, developing more
advanced HNNs and open-source library/toolkits for heterophilic hypergraph learning, and exploring advanced applications in
both scientific and industrial contexts (Ruggeri et al. 2023; Heydaribeni et al. 2024; Gao et al. 2024).
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