
Appendix for “ Permutation Equivariant
Framelet-based Hypergraph Neural Networks”

Ming Li, Yi Wang*, Chengling Gao*, Lu Bai, Yujie Fang, Xiaosheng
Zhuang, Pietro Lio

AAAI 2026

1 Notation Summary

For clarity and ease of reference, we summarize the frequently used mathematical symbols and notations
throughout Section 3 (in the main manuscript) in Table 1.

Table 1: Summary of the frequently used symbols

Symbol Description

G = (V, E) Hypergraph with vertex set V and hyperedge set E
N = |V|, M = |E| Number of vertices and hyperedges
X ∈ RN×d Vertex feature matrix
Y ∈ RM×o Hyperedge feature matrix
H ∈ {0, 1}N×M Incidence matrix of the hypergraph
Dv,De Diagonal matrices of vertex and hyperedge degrees
f ∈ RN Hypergraph signal defined on vertices
L2(G) Hilbert space of square-integrable signals on G
⟨f ,g⟩ Inner product in L2(G)
PK = {Vj}Kj=1 K-level hierarchical clustering of V
sΛ Cluster (node group) indexed by Λ

Λ ∈ Nj Index vector of depth-j in the hierarchy
dim(Λ) Level (depth) of index Λ

LΛ Number of children of cluster sΛ
ϕΛ Scaling (low-pass) vector supported on sΛ
ψ(Λ,i) Framelet (high-pass) vector corresponding to pairwise difference
BΛ Difference matrix used to construct framelets
Fj0(PK) Framelet system at level j0 over tree PK

F ∈ RIG×N Matrix form of all framelet vectors
IG Total number of vectors in Fj0(PK)

nnz(F) Number of nonzero entries in F
f̂ = Ff Framelet coefficients of signal f
π : V → V Permutation (reordering) of vertices
Pπ ∈ RN×N Permutation matrix corresponding to π
π(G) Permuted hypergraph
π(E) = {π(e) : e ∈ E} Permuted hyperedges
A(G,PK) Framelet matrix constructed on hypergraph G with tree PK

A(π(G),PK) Framelet matrix on permuted hypergraph
F⊤F = I Tight frame property of Fj0(PK)

p(Λ,ℓ) Coefficients in the recursive construction of ϕΛ
supp(ϕΛ) Support of the scaling vector
∥ϕΛ∥ = 1 Normalization of scaling vector
[I] = {1, . . . , I} Shorthand for indexing set
M:i, Mi: i-th column and row of matrix M

1

2 Additional Details for Experimental Implementation

Datasets. We evaluate PEF-HNN on seven representative hypergraph datasets, summarized in Table 2. This
collection includes widely-used homophilic datasets such as co-citation networks (Cora, Citeseer) and co-
authorship networks (Cora-CA) (Yadati et al., 2019), as well as heterophilic datasets including Actor, Twitch (Li
et al., 2025), and U.S. Senate/House voting records (Fowler, 2006). These datasets span a broad range of
sizes, structures, and relational patterns, providing a comprehensive testbed for evaluating the effectiveness of
hypergraph models in both homophilic and heterophilic settings.

Table 2: Statistics of the benchmark datasets used in our experiments.

Datasets Hypernodes Hyperedges Depth of Binary Tree Size of Framelet Matrix

Cora 2708 1579 5 113351 × 2708
Citeseer 3312 1079 6 83811 × 3312
Cora-CA 2708 1072 8 13261 × 2708

Actor 16255 10164 10 122455 × 16255
Twitch 16812 2627 11 62816 × 16812
Senate 282 315 6 552 × 282
House 1290 341 8 2884 × 1290

Baselines. We compare PEF-HNN against representative methods from two major categories of hypergraph
neural networks (HNNs):

• Homophily-oriented HNNs: Models such as HGNN (Feng et al., 2019), HyperGCN (Yadati et al., 2019),
AllDeepSets and AllSetTransformer (Chien et al., 2022), and the UniGNN family (Huang and Yang, 2021)
(including UniGCN, UniSAGE, UniGAT, and UniGCNII) have shown strong performance on homophilic
datasets. However, their evaluations primarily focus on such settings, with limited consideration for
heterophilic hypergraphs.

• Heterophily-aware HNNs: ED-HNN (Wang et al., 2023) and HyperUFG (Li et al., 2025) are more
recent efforts that address heterophilic hypergraph learning. Although these models mark a step forward,
their evaluations often rely on limited-scale or weakly heterophilic datasets, as discussed in the main
manuscript.

Hyperparameter Settings. Table 4 provides the complete hyperparameter settings corresponding to the best-
performing results reported in Table 1 of the main paper. Key hyperparameters, such as learning rate, weight
decay, hidden dimension, number of layers, dropout rate, α, and β, are optimized through univariate sensitivity
analysis within the search space defined in Table 3.

Table 3: Hyperparameter searching space.

Hyperparameters Searching space

Learning rate {5e-3, 3e-3, 2e-3, 1e-3, 5e-2, 3e-2, 2e-2, 1e-2}
Weight decay {5e-5, 1e-5, 5e-4, 1e-4, 5e-3, 1e-3}
Hidden Size {32, 64, 128, 256, 512}
Dropout ratio {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Layers {1, 2, 4, 8, 16, 32, 64, 128}
Alpha {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Beta {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

2

Table 4: Hyperparameter settings for each dataset used in the experiments.

Dataset Hyperparameter Setting

Cora

Learning rate: 2e-3
Weight decay: 1e-3
Hidden Size: 512
Layers: 4

Dropout ratio: 0.7
Alpha: 0.2
Beta: 0.3

Citeseer

Learning rate: 2e-3
Weight decay: 1e-5
Hidden Size: 512
Layers: 128

Dropout ratio: 0.5
Alpha: 0.7
Beta: 0.5

Cora-CA

Learning rate: 2e-3
Weight decay: 1e-3
Hidden Size: 512
Layers: 64

Dropout ratio: 0.7
Alpha: 0.2
Beta: 0.6

Actor

Learning rate: 3e-3
Weight decay: 2e-4
Hidden Size: 512
Layers: 4

Dropout ratio: 0.1
Alpha: 0.1
Beta: 0.8

Twitch

Learning rate: 3e-3
Weight decay: 2e-4
Hidden Size: 512
Layers: 4

Dropout ratio: 0.1
Alpha: 0.1
Beta: 0.8

Senate

Learning rate: 2e-3
Weight decay: 1e-5
Hidden Size: 256
Layers: 8

Dropout ratio: 0.8
Alpha: 0.8
Beta: 0.7

House

Learning rate: 3e-3
Weight decay: 2e-3
Hidden Size: 512
Layers: 8

Dropout ratio: 0.6
Alpha: 0.1
Beta: 0.8

3 Additional Experimental Results and Discussion

3.1 Additional Visualization Results

In Section 4.7 of the main paper, we only present a comparative analysis of raw features and learned
embeddings for the Citeseer and House datasets (see Figure 3 in the main manuscript) due to space limitations.
Here, we complement those findings by providing supplementary t-SNE visualizations on three additional
datasets: Cora-CA (top row), Senate (middle row), and Actor (bottom row), as shown in Figure 1. Across
all three datasets, we observe that the representations learned by PEF-HNN yield more discriminative and
well-clustered structures compared to other baselines. On the Cora-CA dataset, which is homophilic in nature,
PEF-HNN effectively preserves class boundaries while enhancing intra-class compactness, outperforming
HGNN and UniGCNII in terms of visual separability. For the Senate dataset, which exhibits strong heterophily,
the embeddings learned by PEF-HNN avoid the degenerate structures observed in ED-HNN and UniGCNII
(e.g., serpentine or linear clusters), and instead produce a more meaningful global layout that better reflects
underlying label relationships. Similarly, on the Actor dataset, PEF-HNN generates clearer class separability
than competing methods, with less entanglement among different classes.

These results further support our claims in the main paper: PEF-HNN is effective not only in homophilic set-
tings but also demonstrates strong capacity to model and disentangle complex relational patterns in heterophilic
hypergraphs.

3

Original Feature HGNN UniGCNII ED-HNN PEF-HNN

Figure 1: Visualization comparison of raw input features and learned representations on Cora-CA (top), Senate
(middle), and Actor (bottom).

3.2 Further Details on Visual Object Classification

Real-World Datasets and Experimental Settings. We evaluate our method on two widely used benchmark
datasets for visual object classification: the Princeton ModelNet40 dataset (Wu et al., 2015) and the National
Taiwan University (NTU) 3D model dataset (Chen et al., 2003). A summary of these datasets is provided in
Table 5.

ModelNet40 consists of 12,311 3D objects across 40 common object categories. Following the HGNN
experimental protocol, we adopt the standard split of 9,843 training samples and 2,468 test samples. The NTU
dataset comprises 2,012 3D shapes spanning 67 categories (e.g., car, chair, chess, chip, clock, cup, door, frame,
pen, and plant leaf), which we partition into 80% for training and 20% for testing.

The reported results for GCN and HGNN are reproduced from (Feng et al., 2019). For GCN, performance
on these non-graph visual datasets is obtained by constructing probabilistic graphs using distance-based metrics.
For both HGNN and PEF-HNN, the hypergraph structures are constructed following the same procedure
illustrated in Figure 2.

Table 5: The detailed information of the ModelNet40 and the NTU2012 datasets.

Dataset Objects MVCNN Feature GVCNN Feature Training Nodes Testing Nodes Classes Size of Framelet Matrix

ModelNet40 12311 4096 2048 9843 2468 40 33149×12311
NTU2012 2012 4096 2048 1639 373 67 7189×2012

Hypergraph Structure Construction. Figure 2 presents the workflow for constructing hypergraphs from
3D visual data, highlighting the key steps in hyperedge formation. We begin by extracting shape features
from 3D object datasets using two well-established representation methods: Multi-view Convolutional Neural
Network (MVCNN) (Su et al., 2015) and Group-View Convolutional Neural Network (GVCNN) (Feng et al.,
2018). These feature embeddings are then used to define hypergraph structures. Specifically, we construct
hyperedge indicator matrices H1 and H2 by applying the k-nearest neighbor (k-NN) algorithm in the MVCNN
and GVCNN feature spaces, respectively. In the single-view setting, we utilize either H1 or H2 to build the
hypergraph. In the multi-view setting, we concatenate both matrices to generate a unified hypergraph consisting

4

of 2N hyperedges. This construction process produces visual hypergraph data that can be directly utilized by
the PEF-HNN model for node-level classification in visual object recognition tasks.

Step I: Feature Extraction

MVCNN

GVCNN

3D Object

⋯
⋯

⋯
⋯

⋯

MVCNN-based Feature

GVCNN-based Feature

Neighborhood
Centeroid

CenteroidNeighborhood

Step II: Hypergraph Structure Construction

⋯ ⋯Concat

Multi-View Single-View

⋯

⋯

Figure 2: Hypergraph construction pipeline for visual object classification.

Table 6 details the reproducible hyperparameters used to obtain the visual object classification results
reported in the main paper.

Table 6: Hyperparameter settings for ModelNet40 and NTU2012 datasets.

Dataset Hyperparameter Setting

ModelNet40

Learning rate: 2e-3
Weight decay: 1e-4
Hidden Size: 256
Layers: 4

Dropout ratio: 0.4
Alpha: 0.4
Beta: 0.7

NTU2012

Learning rate: 2e-3
Weight decay: 1e-4
Hidden Size: 512
Layers: 4

Dropout ratio: 0.2
Alpha: 0.5
Beta: 0.1

Further Ablation Study. Table 7 presents the ablation results on the ModelNet40 and NTU2012 datasets,
providing empirical evidence for the importance of jointly incorporating low-pass and high-pass components

5

in the visual object classification task. The full model, which leverages both spectral components, achieves
the highest accuracy on both datasets (98.42% on ModelNet40 and 91.40% on NTU2012). Removing the
high-pass component leads to a noticeable drop in performance (-0.32% on ModelNet40 and -1.02% on
NTU2012), indicating that high-frequency information contributes valuable discriminative features, particularly
for heterogeneous structures. Similarly, excluding the low-pass component also degrades performance (-0.21%
on ModelNet40 and -1.52% on NTU2012), highlighting the necessity of capturing smooth, semantically coherent
patterns. These findings confirm that visual data typically involve both homophilic and heterophilic associations,
for example, an airplane’s fuselage and wings are structurally and semantically distinct yet semantically related
within the object context. By jointly modeling information across frequency spectra, the proposed approach
enables more adaptive and semantically enriched representations, ultimately enhancing classification accuracy.

Table 7: Ablation study on the contributions of low-pass and high-pass components.

ModelNet40 NTU2012

Full model 98.42 ± 0.14 91.40 ± 1.33
w/o high pass 98.10 ± 0.15 90.38 ± 1.46
w/o low pass 98.21 ± 0.15 89.88 ± 1.26

References

Chen, D.-Y.; Tian, X.-P.; Shen, Y.-T.; and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval.
Computer Graphics Forum, 22(3): 223–232.

Chien, E.; Pan, C.; Peng, J.; and Milenkovic, O. 2022. You are AllSet: A multiset function framework for
hypergraph neural networks. In ICLR.

Feng, Y.; You, H.; Zhang, Z.; Ji, R.; and Gao, Y. 2019. Hypergraph neural networks. In AAAI, 3558–3565.

Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; and Gao, Y. 2018. GVCNN: Group-view convolutional neural networks
for 3D shape recognition. In CVPR, 264–272.

Fowler, J. H. 2006. Legislative cosponsorship networks in the US House and Senate. Social Networks, 28(4):
454–465.

Huang, J.; and Yang, J. 2021. UniGNN: A unified framework for graph and hypergraph neural networks. In
IJCAI, 2563–2569.

Li, M.; Gu, Y.; Wang, Y.; Fang, Y.; Bai, L.; Zhuang, X.; and Lio, P. 2025. When hypergraph meets heterophily:
New benchmark datasets and baseline. In AAAI, 18377–18384.

Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E. 2015. Multi-view convolutional neural networks for
3D shape recognition. In ICCV, 945–953.

Wang, P.; Yang, S.; Liu, Y.; Wang, Z.; and Li, P. 2023. Equivariant hypergraph diffusion neural operators. In
ICLR.

Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; and Xiao, J. 2015. 3D ShapeNets: A deep
representation for volumetric shapes. In CVPR, 1912–1920.

Yadati, N.; Nimishakavi, M.; Yadav, P.; Nitin, V.; Louis, A.; and Talukdar, P. 2019. HyperGCN: A new method
for training graph convolutional networks on hypergraphs. In NeurIPS, 1511–1522.

6

	Notation Summary
	Additional Details for Experimental Implementation
	Additional Experimental Results and Discussion
	Additional Visualization Results
	Further Details on Visual Object Classification

