

AAAI Association for the Advanceme of Artificial Intelligence

February 26-27, 2024

Highlights of Frame-HGNN

+ Harnessing the abundant educational data to predict student outcomes remains essential for proactive educational planning

↔ We introduce a framelet-based transform approach to capture high-order relationships among students from both low-pass and high-pass perspectives

✤ Instead of traditional GNN, we leverage a dual hypergraph neural network to learn and represent hypergraphs derived from both low-pass and high-pass components.

Preliminary experimental findings on a real-world educational dataset highlight the promising potential of our framework

Background and Motivation

• Why framelet-based transform?

Since the framelet-based transform identifies a frequency-domain operation, it refines and segregates the raw features into a low-pass signal and six high-pass signals, which distinctively highlights the similarities and differences among students

• Why hypergraph neural network?

♦ Beyond pair-wise relationship : Traditional graph structures can only reflect the relationships between linked nodes, while hypergraphs capture **higher-order information** between hyperedges

♦ Flexible hyperedge construction : Hypergraphs naturally provide a more flexible way to form hyperedges, e.g., prior knowledge, euclidean distance or different modalities.

Framelet Based Dual Hypergraph Neural Networks for Student Engagement Prediction @Workshop on AI for Education - Bridging Innovation and Responsibility (AI4ED-AAAI)

Ming Li¹, Jiandong Shi¹ ¹Zhejiang Normal University, Jinhua, China

Main Framework and Key Modules

Figure 1: Overall framework of Frame-HGNN

Input: Pre-processed Student Feature Matrix *X*

Output: Student Engagement Label *Y*
DHF₂ = {
$$a^{H}, b_{1}, \dots, b_{6}$$
}

✤ S1: Transform the features X

Construct a 2D directional Haar filter bank DHF₂ Decompose the features through DHF₂

♦ S2: Generate a set of hypergraphs $G = \{G_1, G_2, ..., G_7\}$

Treat the vectors in 7 coefficients matrices as nodes

Calculate the distance between nodes, then the nearest k-neighbors form a hyperedge.

+ S3: Hypergraphs representation learning

For low-pass filter coefficient matrix, employ an identical HGNN

For 6 high-pass filter coefficient matrices, leverage 6 share weights

HGNN Start hypergraph convolutional operation in 7 channels, respectively

Stack L layers and loop

4 S4: Predict the student engagement *P*

Concat the representation to get final prediction

• Through this, we can:

✓ Refine the raw features

✓ Capture the higher-order relationships between students and peers from various views

Compute Euclidean distance *dis*[*i*, *j*]: $dis[i, j] = \sqrt{\sum (\mathbf{X}[i, k] - \mathbf{X}[j, k])^2}$

Work-in-Progress Short Paper

Undecimated Discrete Framelet Transform

Decomposition

Reconstruction

To decomposition the features, we initially define a 2D directional Haar filter bank DHF₂={ a, b_1, b_2, \dots, b_6 }, then, for a 2D filter h, we denote X_h the (circular) convolution of X with the 2D filter h, i.e., $X_h := X \star h$ with:

$$\mathbf{X}_{h}(k) := \sum_{k' \in \mathbb{Z}^{2}} \widetilde{\mathbf{X}}(k'-k) \cdot h(k'), \quad k = (k_{1}, k_{2}), k' = (k'_{1}, k'_{2}) \in \mathbb{Z}^{2}$$

Then, we can decompose *X* as follows:

$$\mathbf{X} = \mathbf{X}_a \star ar{a} + \sum_{i=1}^6 \mathbf{X}_{b_i} \star ar{b}_i$$

Initial Experiments

- We conduct experiments on RoomReader dataset which includes over 8 hours of video and audio recordings, capturing the interactions of 118 participants across 30 sessions that take place in the online environment of Zoom.
- We compare our Frame-HGNN to four triditional methods including ConvLSTM, TEMMA, EnsModel and Bootstrap with the same data preprocess.

Table 1: The performance comparison of student engagement prediction accuracy

Method	ACC. (%)
ConvLSTM	76.50 ± 1.85
TEMMA	80.90 ± 2.47
EnsModel	75.30 ± 3.50
Bootstrap	73.80 ± 3.35
Ours	$\textbf{85.38} \pm \textbf{1.41}$

Overall, the proposed Frame-HGNN achieves:

- Excellent performance on the student engagement prediction task with approximately 1.41 improvement on accuracy.
- Expressive feature repesentation ability across GNN achitectures.

Remark: Ongoing experiments are currently in progress, which will serve to extend and enhance this initial work further.